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INJECTION OF LASER FUSION PELLETS
PART I

" ACCURACY REQUIRED, ACCELERATION, AND
RESIDUAL GAS DEFLECTIONS

Joseph J. Devaney

ABSTRACT

In order to position a pellet within a laser fusion power plant reactor
chamber accurately enough so that sufficient light will illuminate the desired
portions of the pellet, one must know for the pellet: the positional accuracy
required, the accelerations (structurally) permissible, and the perturbing
effect on the pellet trajectory of residual gas motion. This report purports
to answer these questions by a number of representative calculations. It is
found that neither positional accuracies, typical pellet structure, available
pellet accelerations, nor the highest expected chamber gas densities (nor the
lowest) permitted by efficient laser beam transport, .are any restraint upon
pellet insertion save at high repetition rates (> 10/s) when the other pa-
rameters have latitude for, and require (at least some) optimization.

I. INTRODUCTION

In order to position a pellet within a laser
fusion power plant reactor chamber accurately
enough so that sufficient light will illuminate the
desired portions of the pellet, one must know for
the pellet: the positional accuracy required, the
accelerations (structurally) permissible, and the
perturbing effect on the pellet trajectory of re-
sidual gas motion. This report purports to answer
these questions by a number of representative cal-
culations. In general we find that pellets can
withstand high accelerations and the perturbing
effects of debris is negligible.

Section II estimates the pellet position accu-
racies needed. Section III gives possible acceler-
ations and notes a typical structural acceleration
Timit., Section IV gives residual gas motion of the
pellet debris expanding into vacuum. Section V
gives the residual gas motion of the pellet debris
expanding into and shocking a background gas. Sec-
tion VI gives the conclusions that in the range of
parameters typical at this writing, pellet deflec-
tions and accelerations are acceptable. Our refer-
ence pellet] for this study has a total mass of
0.3 g and an outer radius of 0.309 cm.

Throughout this report we sometimes use crude
scalings or assumptions, the justification of which
lies in our intent to calculate a rough upper bound
to the effects described.

The chamber gases considered are argon and
lithium at particle densities ranging from vacuum
to 1017/cm3. We fix the chamber ambient tem-
perature at 5000 C., Our bounds are not invali-
dated by conceivable chamber temperature variations.

I1. PELLET POSITION ACCURACY REQUIRED

Calculations of the beam position accuracy for
the Los Alamos 100-TW Antares laser are based on a
wavefront budget of 0.068 Arms. J. L. Monroe?
finds that a pointing error of 60 um (4 s of arc)
loses only 2% energy (82% to 80%) out of a 400 um
circle, and for an error of 120 um (8 s of arc)
loses but 4% (82% to 78%) out of a 400 um circle.
For a 1000-um or 1-mm circle one might then expect
that pellet positioning would have to be within the
order of 300 um. Of course the pellet position is
relative to the laser beam foci (except for gross
displacements), and if pellet positioning and laser
firing is not determined by the laser optical
trains, then the pellet displacement permissible

.




error figure of 300 um must be apportioned among
the pellet location error and the laser pointing
errors. In addition, if particular parts of a pel-
let must be illuminated, the above displacement
figures also apply for pellet angular errors, 6 (in
the form R®, R being the outer radius), such that

8 <V 2 radians. Detailed designs are not yet in
hand upon which angular analysis can be based.
Generally the least restrictive pellets in all dis-
placement error dimensions are outer surface 1l1lu-
minated, symmetric pellets in which the whole area
of the pellet is to be illuminated. In that case
orientation is not required, and the largest trans-
lational displacement error is permitted.

III. PELLET ACCELERATIONS PERMISSIBLE

We give a number of representative calculatians
of the accelerations permissible for various struc-
tural members of a typical pellet. For orientation
we first present a number of conceivable accelera-
tions and some expected decelerations. Consider
for example a 100-cm-long pneumatic pellet gun pow-
ered by hydrogen at the chamber ambient temperature
of 5009C. Neglecting viscosity and frictijon but
correcting for rarefaction, (see Appendix), we get
the results given in Table I.

The amount of hydrogen used to inject the pel-
let is equal to the tube volume at the time of gas
shut off, t . This time is less than the time of
acceleration down the tube because the rarefaction
wave signalling closure of the hydrogen supply
travels at finite speed, to wit the sound speed c

TABLE 1

PELLET VELOCITIES AND ACCELERATIONS FROM A
PNEUMATIC GUN (pellet mass 0.3 g, radius
0.309 cm; gas H% at 5000C, gqun length
00 cm)

Initial Final
Pressure Acceleration Velocity
(atmospheres) (cm/s)
1 1027. 13,700
0.1 103. 4,489
0.01 10.3 1,419
0.001 1.0 449
(or free fall
in vacuum)

= 2.11 x 10% cm/s 1n 500°C Hy at 1 atm. HWe

here ignore the slight change in c caused by the
pellet velocity rarefaction of the Appendix. Thus if
t = J2s/a is the time of acceleration, s being

the length and a the (constant) acceleration, then
the difference,

t - ts = g/c

from which

tg = v 2s/a - (s/c) = 0.0136s.

The minimum volume of H, gas released in the
chamber is

V= (w/z)aR2t§ = 28 cmd,

R = 0.309 cm being the pellet radius. At 1 atm
Hy and a temperature of 5000C this volume con-
tains 2.66 x 1020 molecules,which spread out over
a cylinder of 250-cm radius by 2400-cm long adds
5.65 x 101! molecules/em3. This perturbation
is negligible compared to the usual chamber densi-
ties considered (10]3 to 1017 partic]es/cm3).

To obtain the maximum pellet drag in the cham-
ber, we study argon at a particle density of
10]3/cm3. The drag force at high speeds is

Fp = Cp % ov2 (n82), M

where Cp js the coefficient of drag, p the gas
density, v the pellet velocity, and R the pellet
radius. The coefficient of viscosity, T, is relat-
ed to the kinematic viscosity, v, by

v =1/p. (2)

The Reynolds number, &, is given as
® = vd/v = vdo/7, (3)

if d is the pellet diameter. At 5000C and 1 atm
the viscosity, M, of argon is about 448 micro-
poises,3 and that of lithium we estimate lies
between that for hydrogen and mercury. We there-
fore take m of 1ithium to be 285 micropoises.

The decelerations at various speeds (Table I)
are given in Table II. The decelerations in
Table II are negligible compared to those of accel-

eration of the pellet given in Table I. Pellets




TABLE II
LONGITUDINAL PELLET DRAG

(particle density 1017 /cm3, Eadius 0.309 cm,
g = 980.7 cm/s<)

Coeffi-
cient
of Drag
Reynold's Drag, Force, Decele-
Velocity Number, Cp Fp ration
(cm/s) R Ref. 4 (dynes) {q's)
a. Argon
449 390 0.7 0.14 0.0005
1,419 1,233 0.52 1.04 0.0035
4,489 3,900 0.41 8.2 0.028
13,770 12,000 0.48 90. 0.31
b. Lithium
449 107 0.98 0.034 0.00012
1,419 337 0.72 0.25 0.0008
4,489 1,066 0.47 1.64 0.0055
13,770 3,270 0.43 14.1 0.048

can stand accelerations typically from 6000 g's
upward to well over 100 000 g's so that the highest
accelerations or decelerations considered in Tables
I and II are not restrictive.

IV. RESIDUAL GAS MOTION - EXPANDING INTO VACUUM

In this section we follow the explosion of a
pellet into an evacuated cylinder and calculate the
residual gas motion and its effect on the next pel-
let. For simplicity, in the final stages of the
explosion, when it is slowly changing, we take the
degree of ionization to be fixed and neglect late
recombination. The appropriate ratio of specific
heats, ¥, for these explosions is 1.4.5 The
spherical explosion is converted by the cylindrical
walls (by combination of incident and reflected
wave), into a bifurcated plane expansion, that is
to a bifolded plane expansion. The slab theory
developed by F. J. Dyson6 therefore applies. His
parameter

A= (y+1)/2(ry-1) =3 (7)

for v = 1.4, Whence for large times (]x| < vt) the
density is

= F(x'%) ])[1 X2 ])"]
"™ Polrourh ML T2

2,222
- AT 1 - Gt B (@)

where o is the initial density of the slab, uy
is the velocity of the gas fronts, and x the dis-
tance from the slab center,

2/(y - 1) ¢, = [2/(7 - D]y [ave,!

= 0.4
ug = 5\/;:;7;;:_—. (9)

These formulae are based on an equation of state of
the form

Uy

P = Ap” = Apt-d, (10)

where A is a constant, P the pressure, c, the
initial speed of sound, t] is the time from the
start of motion, and T, {s the time it takes for
the rarefaction waves to meet in the center. T]

is equal to half the original thickness, H, divided
by the speed of sound, c,,

T, = H/c . (11)
The velocity vy at position x and time ty is
simply
vy = x/ty. (12)
We return now to the early spherical expansion
into vacuum before the explosion reaches the cylin-~
drical walls. By generalizing Devaney’ to v

= 1.4, his equation of the density in a spherical
explosion of total mass M is

o= (35 w12 R 1 - (2RH|E,  (13)

and the total (particle) energy is

E =4 MR2/27¢2 = 4 MdP/27, (14)
where the maximum velocity, u, is

U= R/t = [2/(7 - 1)]cgs (15)

and the velocity within the expanding spherical gas
is

u = r/t. (16)



Having now the velocities and densities of both
a planar and a spherical explosion, we must trans-
fer from the latter to the former. That part of
the spherical explosion that is directed along the
axis suffers no appreciable change. That part of
the explosion that reflects off the cylindrical
walls forms, by combining the original with the
reflected gas, a combined gas flow similar to a
Mach stem in blast wave theory, and contributes to
the down axis flow, a gas flow of the same order as
{or perhaps larger than) the on-axis flow itself.
So it is reasonable to take the axis flow as suit-
able for matching spherical to plane flow. Indeed,
comparison of formula (13) for spherical flow and
formula (8) for plane flow show the same shape and
nearly the same analytic dependence on the var-
jables. We match at equal volumes and equal on-
axis gas fronts, including frontal on-axis veloci-
ties. Let the cylinder radius be Rc’ the spheri-
cal gas outer radius R, and the axial distance, x.
We require at matching time that the spherical vol-
ume equal the cylindrical volume, or

aR3/3 = WRE e 2x at match. (17)

Equal location of the on-axis gas fronts imply
x = R at match, (18)

so that, using Rc = 250 cm,

Rm = \/g- ¢ 250 = 306.2 cm at match. (19)

Xm = Ry are the matching distance parameters of
planar and spherical flows respectively. Using
Eq. (18) and comparing Eqs. (13) and (8) we find

oy (3/8)(T,/t, ) = 35 M/12#R3 at match, (20)

and

uptyn, = Ry at match. (21)

So determining the parameters of the plane flow
from those of the spherical explosion.

Because our expansion is predicated on a fixed
degree of fonization together with neglect of radi-
ative effects, it is accurate for later times only,
so we do not start our spherical expansion by sub-
stituting the initial energy into Eq. (14). Rather
we utilize detailed machine calculations for ini-
tial expansion and use our theory to continue the

expansion only in its later stages. At 5.1

x 10-8 s the outer radius of our reference pellet
has reached 2,67 cm with an average temperature of
86 eV for the outer parts containing 2/3 the pellet
mass. We scale this pellet to larger radii and
times using a Tower yield pellet of the same type
that was calculated to later times. We thus find
our reference pellet at 3.15 us after start of
laser 1light deposition to have an outer radius, R

= 189 cm, and an average outer part temperature of
2.3 eV. At 51 ns we have in the pellet a to-

tal kinetic and internal energy of 24.4 MJ, the
remainder of the explosive energy having been
carried away by neutron and x-ray radiation. Scal-
ing to 3.15 us the energy available for expansion
has dropped to 22.7 MJ, the rest also having been
lost to radiation in the interim. We take further
radiation Tosses to be negligible and so substitute
E =22.71 x 1013 ergs plus M = 0.3 g in Eq. (14)

to find

T=7.13 x 10 cn/s = uy, (22)

where we will take the gas front velocities of the
spherical and planar expansions to be the same at
match time. At R = 189 cm, Eq. (22) gives a time
t = 2.65 us. This time, t, is characteristic of an
explosion of 0.3 g and 22.7 MJ whereas the time

3.15 us includes compression, and burn times as
well as an initially faster expansion followed by
very considerable radiative energy loss. Using
Eqs. (22) and (19), the effective spherical match
time, t ., is 4.30 us. Using Eq. (20),

o, (3/8)(T,/t, ) = 9.76 102 g/em . (23)
Equations (20) and (22) yield

-6
t]m = 4,30 x 107" s. (28)
Thus, using Eqs. (23) and (24), Eq. (8) becomes
b= (4.19 x 107 4t) *

[1 - (27(7.13 x 10)%4%)) 2 g/en®,  (25)

where we have used the fact that the spherical and
planar times are identical, t = tl-



Equations (12) and (25) give us the parameters
needed to estimate the effect on the next inserted
pellet

vy = x/t. (12)

It is hard to imagine the explosion symmetry
from a preceding pellet being as much as 5 mm off
from the position of the next pellet, but we chose
that number as a conservative estimate. At a repe-
tition rate of 10/s the density and velocity are

Po.1 = 419 x 10713 g/en’,

Vo1 = 5 cm/s, (26)

and at a repetition rate of 1/s the density and
velocity are

py = 4.19 x 107" gren®,

vy = 0.5 cm/s. (27)

The transverse drag forces can be obtained using
Eq. (1) for a radius 0.309 cm to get Fp = 1.57
x 10-12C; gynes at 10/s and 1.57 x 10715
dynes at a 1/s repetition rate. These are utterly
negligible forces for any drag coefficient. Actu-
ally the vacuums represented by these densities are
more tenuous than typical or needed in vacuum reac-
tion chamber. The low results of Eqs. (26) and
(27) simply indicate that the chamber has returned
to quiescence by the time the next pellet is in-
serted so that it is not deflected by remaining
debris motion.

A calculation for ¥ = 1.67 (monatomic) and for
a higher, 10/s repetition rate yields a larger ef-
fect:

e = 7.7 x 1078 g/cm3 and v, = 5 cm/s, (28)

1

which at 5 mm successive pellet stagger and CD
= 1.26 leads to a deflection of 0.16 um, still a
negligible displacement.

Conclusion: In a vacuum chamber, and for repe-
tition rates near or less than 10/s, pellet injec-

tion is not deflected by residual gas motion.

V. RESIDUAL GAS MOTION - BACKGROUND GAS, BLAST-

WAVE, ACOUSTIC RINGING

In the presence of a background gas in the
chamber, the microexplosion sets up first a spheri-
cal blast wave which the cylindrical walls convert
into two (roughly) plane waves that alternately
reflect from the ends and then from each other at
the center repeatedly, being damped by pressure and
matter loss at the ends (wall and gas viscosity
losses are negligible and their omission conserva-
tive), eventually exciting the acoustic modes of
the chamber of which the fundamental will dominate
in time, but we will actually ¥ind it having domi-
nant excitation right after the first end reflec-
tion. Our method of calculation is first to employ
the brilliant self-similar analysis of Sedov8
describing the expansion of a spherical blast wave
which we then reflect off a cylinder to form, with
the resulting Mach stems, a plane blast wave, the
parameters of which we match along the axis with
We propagate
There we cannot

the original spherical blast wave.
the plane blast wave to the ends.
use simple self-similar reflection theory because
the densities, temperatures, and pressures in the
chamber are now far from constant. With the help
of H. Ruppel, the code YAQUI was used to reflect
the blast wave from the end and into its own tail,
to eventually form a nearly perfect fundamental
acoustic mode of the chamber. Although the ampli-
tude of the wave at this early time is large and
therefore quite evidently nonlinear, we argue that
early application of acoustic theory is conserva-
tive, i.e., acoustic wave Tosses are less than
those for nonlinear waves, and we will follow the
dynamics of the damped acoustic wave until inser-
tion of the next pellet.

For maximum effect we choose the highest densi-
ty background gas and so consider argon at an ini-
tial particle density of 207em3 and a tempera-
ture of 773K leading to densities of 6.63 x 10-6
g/cm3 and pressures of 10 672 d/cn? or 8 torr.

To mock up the extra degrees of freedom of ioniza-
tion and recombination we retain ¥ = 1.4, The
theory easily handles other ¥'s. Because the blast
wave begins early, caused by the rapid pellet ex-
pansion, we conservatively cut off radiative losses
also early and start the spherical blast wave in



the argon with 24.4 MJ energy at 51 ns. It

should be understood that the original explosive
energy is considerably larger than 24 MJ. Follow-
ing now Sedov's notation we relabel the total ener-

gy, E, = 24.4 MJ, and reserve E for an energy
parameter, the two being related by

E. =cE, (29)

where, from Sedov's Fig. 75, for ¥ = l.4:a= 0,85
for spherical blast waves and « = 1,105 for plane
blast waves.

Sedov's formulae (11.4) and (11.6) give the

Shock posit‘ion, r2’ and speed’ V2s as a func-
tion of time, E, and the initial density, 1.
For the special case,

E =287 x 10" ergs, (30)

ry = (Ef0y)1/% 275, (31
v, = (2/8)(E7e)1/® 7315

= (2/5)(E/pr3) /2. (32)
For the plane case,

E =2.21 x 10'% ergs, (33)

if started as a plane shock, but see below,
Eq. (44) for the value we use.

r, = (E/0)173 4273, (34)
v, = (2/3) (/o) V3 7173

= (2/3)(E/oqr,) /2. (35)
Solving Eg. (31) for t,

t = r3/4(ere,)712, (36)
we substitute the spherical to plane match radius,

306.2 cm, Eq. (19) to find
t = 2.494 us. (37)

At this time we convert the spherical blast wave to
a plane wave of the same strength along the axis.

That is a rigorous match at the axis and perhaps a
somewhat inferjor match elsewhere because the Mach

stems formed by the incident and reflected waves
from a rigid cylinder wall can be of greater
strength than the initial wave alone. However, in
the case of magnetic fields, the off axis waves are
less strong because the shock does work in com-
pressing the magnetic field. However in all cases
it is a reasonable approximation to take the axial
spherical shock strength at ty to be the plane
shock strength. As before, we match when the
spherical and cylindrical volumes are equal,

Egs. (17) and (18), to get Tom = 306.2 cm,

Eq. (19). Sedov gives for the shock pressure,

Py = {891,[0/ +2)%(y + l)]} .

(E/p])zl(z +V) t'ZV/(V +2)

= 8€/[(v + 2)2(v + W], (38)

where v = 1 for plane flow, v = 2 for cylindrical,
and v = 3 for spherical flow. Thus for our param-
eters, at match,

Py = 1.333 d/cml. (39)

We match pressures and distances and determine a
new time, t', and energy parameter E‘. Primes now
refer to planar motion. We will show, as a conse-
quence, that the shock velocities are identical at
match point.

For v = 3, spherical, Eq. (38) gives

P, = 8E/[25(¥ + )r3], (40)
and for plane, Vv = 1,
Py = BE'/[9(Y + N)ry|, (41)

equation p, and rp at match leads to the rela-
tion

' 2
E (9/25 er)E. (42)

Substituting E' for E in Eq. (35) we get the plane
shock velocity, vj,

vy = (2/5)(E/oyra )12 = vy, (43)

which is precisely the spherical shock velocity,

vo, of Eq. (32), proving that matching pressure
and distance ensures a velocity match, as alleged.



At match then Formula (42) yields

E' = 1.102 x 107 ergs. (44)

Formula (41) becomes

P, = 4.08 x 10%/r,, d/en?, (45)

and (35) becomes

n

v, = 8.59 x 10° vy /2 /s, (46)

From which the fluid velocity is
uy = 2vo/(y + 1), (47)
or for ¥ = 1.4

up = 7.16 x 10% 5172 cnys, (48)

The plane shock time, t', is given by Formula (34)
divided by (35),

t' = 2ry/3v, = 7.758 x 108 325 (a9)

This time is only applicable between match and
cylinder ends. It took 5.1 x 10-8 s to compress
(by laser 1ight) the pellet, burn the DT, and ex-
pand to 2.67 cm where we picked up a (Sedov) spher-
ical blast wave. The spherical blast wave time at
2.67 cm is given by Eq. (36) and is 1.77]

x 1079 5. Thus the real time to match point is
2.495 us and the real time elapsed, T, beginning
with Tasers on pellet to plane expansion at ro is

=t - 1.662 x 1074

7=7.788 x 107 r3/2 _ 1,662 x 107 5, (50)

so that for r, = 1200 cm, 7= 3.059 x 10~ s.
The density increase in a strong shock is given by

ey = [ + Wy - ey

= 60, = 3.98(-5) g/’ (51)

The temperature (if we can now switch to a simple
un-ionized perfect gas law) is
T2 = pzA/an. (52)

We approximate the actual end wall configuration by
end plates (with exhaust holes) at 1200 cm from the

center. At that position, just before the shock
strikes the end we have the peak shock parameters:
Pressure

P, = 3.40 x 10° d/em® Eq. (45) (53)

Shock velocit

v, = 2.48 x 10° cm/s Eq. (46) (54)

Fluid velocity
u, = 2.07 x 10° em/s Eq. (48) (55)
Real time
T=3.059 x 107 s Eq. (50) (56)
Dens ity

Pp = 3.98 x 107 g/en® Eq. (51)  (57)

Temperature
T2 = 4,104k Eq. (52) (58)

Using Sedov's tables, p. 222, one can easily
determine from these values the values of particle
velocity, density, and pressure between r = 1200
and 0 cm. The velocity distribution is nearly pro-
portional to the distance from the origin, being
very slightly peaked toward r5. On the other
hand the temperature rises sharply as r decreases
and so must be considered unphysical for small
enough distances from the center (radiatian losses,
if included, would prevent such extreme tempera-
tures). Both the pressure and the density are
strongly peaked forward, the former dropping from
its maximum value at Ty = 1200 cm to an asymtotic
40% of maximum for r = 600 cm. The density drops
to zero with decreasing r; it has dropped to half
value at r = 1080 cm and is down to 0.06 of maximum
at 600 cm.

With such sharp density, pressure, and tempera-
ture variations, simple shock reflection into con-
stant density residual gas is wholly inappropri-
ate. Accordingly it was necessary to resort to a
machine calculation to reflect the shock from the
end wall and to propagate the reflected wave toward
the center. Through the kindness of H. Ruppel the
problem of first reflection was run using the code
YAQUI. Inputs were the above described density and




fluid velocities versus distance plus an equation
of state of the form

P={(y - 1)el, (59)

[}

I being the internal energy, 2.14 x 1010 ergs/g,
which we took from the peak values, Egs. (53) and
(57). Figure 1 shows a typical half cylinder
planar result at time AT = 3.3 x 10-3 s after
reflection. In Fig. 1 we plot the now inward velo-
city, u, and the pressure p versus distance. Be-
cause of collapse of the computing mesh the values
of x between 0 and 200 cm are oscillating and are
consequently unreliable. The values for this run
are slightly higher than warranted by our present
input; P being 12% higher in Fig. 1, and u being 6%
higher. The shape of the wave is nearly that of

the fundamental acoustic wave of the chamber,

= 2400 cm. The velocity is nearly symmetric and
shows a negative peak for positive x and would show
a corresponding positive peak for negative x if
plotted. The pressure is dominated by a pressure
peak at the ends, but its minimum does not occur at
x = 0 as it should for a perfect fundamental wave.
In any case not only is the wave already nearly
fundamental, but we expect the fundamental mode to
dominate eventually because of higher damping of
the harmonics. We therefore analyze Fig. 1 (cor-
rected) for the fundamental mode strength by numer-
jcal integration. Thus we calcuaite the standing
wave,

u = +(A/KPDc)sin(rx/L)sinfwt + &), (60)

P = (P> + A cos(mx/L)cos(wt + ), (61)

~u
(10%m/)

P

| 1 | 2 1 1

400 600 800 1000 1200
x (cm)

Fig. 1. Velocity and pressure after blast wave reflection
{0.0033s) at end with no hole {Calculation 1II,

Cycle 151).
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where A is the amplitude, {P> the mean density, ¢
the speed of sound, L is the half-chamber distance,

1200 cm, w is the angular frequency, # is the phase.

From the mean internal energy, I = 2.72
x 1010 ergs/g, evaluated using Eq. (59) and only
from 360 cm to 1200 cm so as to avoid mesh collapse
uncertainties, and using the formula

c=Vy7I = /141, (62)
we find
¢ = 1.952 x 10° cm/s. (63)

The pellet debris only increases the mean density
0.01% over the original argon density of 6.634
x10$,tm$

o> = 6.635 x 108 g/em’. (64)
The mean pressure from Fig. 1 (less 12%) is
<P> = 89,900 d/cm?, (65)

and we estimate the peak pressure to be

P ~ 168,000 d/cn’,
so that at t = 0, x = L, and using Eq. (61)

P -<P>=aP = 77,900 d/cn’ = -A cosg. (66)

From a numerical integration of the velocity curve
of Fig. 1 (less 6%) and comparison with integration
of Eq. (60) at t = 0, we find

(A/<poc)sing = -137,600 cm/s, (67)
so that using Egs. (64) and (65)

A sing = -178,300. (68)

Solving Eqs. (66) and (68) we get
% = 1.159 radians, (69)
: AP = A = -194,600, (70)

so that the maximum velocity is

-u = {(A/¢p>c) = -150,200 cm/s. (71
The angular frequency, w, is determined from

W= 27f = 2mc/) = nc/L, (72)
whence using Eq. (63)

w = 511 radians/s, (73)

the period, , and frequency, f, are

= 1/f = 2n/w = 2L/c = 0.01229 s, (74)

f =w/2m = c/2L = 81.35 5™V, (75)
Thus, Eqs. (60) and (61) become
u = -150,200 sin(wx/1200)

esin(511 t + 1.159), (76)
P = 89,900 - 194,600 cos(mx/1200)

ecos{511 t + 1.159).. (77)

That the amplitude of pressure oscillations
exceeds the mean is unphysical and results from
premature substitution of the linear (acoustic)
theory for the nonlinear theory. Our justifica-
tion for such early substitution is threefold.
First we have not yet included damping which will
reduce A, although not usually below <{P> after only
one end bounce for small aperture exhaust ducts.
Second, early use of linear theory is conservative,
the nonlinear wave damps faster, so we overesti-
mate effects. Third, within our level of approxi-
mation, early linear substitution is not unreason-
able.

The time t of Eqs. (75) and (76) begins as of
Fig. 1. Real time, T, since the beginning of the
laser light pellet interaction is related to this t
by Eq. (50) to r, = 1200 cm plus time to cycle
151 of Fig. 1).

T=6.359 x 1075+t s. (78)

Each time the wave hits the ends a portion of
the wave is lost to the exit orifices. Scaling a
typical size exhaust duct from a wetted wall de-
sign9 of 4.2 m3 volume to our 471 m3 volume
we choose each exhaust duct to have a radius of
100 cm. For this orifice we will assume (Case I)
that (100/250)2 = .16 of the over-pressure and
velocity amplitudes are lost with each reflection.
In case the chamber has conically narrowed ends
leading to the orifice, or if the orifice is larger
than 100 cm, then more is lost per reflection so we
also consider a case (II) in which half the over-
pressure and velocity amplitudes are lost per re-
flection. Thus for Case I, Egqs. (76) and (77) be-
come:



u = -150,200(0.84) (0-00899 + t£)/.01229

sin(wx/1200)sin(511 t + 1.159) ,

= A, sin( x/1200)sin(511 t + 1.159) . (79)

p = 89,900 - 194,600(0.84)(0-00899 + t)/.01229

ecos(mx/1200)cos(511 t + 1.159),

P= (P> - A cos(mx/1200)cos(511 t + 1.159). (80)

The 0.00899 in the exponent accounts for the
first (machine calculated) reflection at the ends
less the time to arrive at the configuration of
Fig. 1, t = 0 here. We will consider two pellet
velocities (Table I), fast (f), 13 770 cm/s, and
slow (s), 449 cm/s; and two repetition rates; 1/s
(T=1s) and 10/s (T=0.15s). We calculate the
maximum pellet deflection at x = 0.5 cm, a rather
large departure from symmetry of one explosion to
the next, but a highly possible departure for a
nonsymmetric chamber. Pellet deflection is caused
by change in pressure and by aerodynamic drag;
these are 90° out of phase, however. The side,

b, of a cube of the same volume as a sphere of ra-
dius r is

b = (4m/3)1/3 r, (81)
From Eq. (80) the pressure change across b is

p = +(mA/1200)sin(wx/1200)
ecos(511 t + 1.159)(4n/3) 3 r,  (s2)
with the force being
F, = aPb? = (72A/900)r3 sin(mx/1200)

cos(511 t + 1.159), (83)

and the deflection from the wave pressure being
(for small ax)

. 2 2,02
A p (1/72)at FpRc/va . (84)

R is the cylinder radius, m the pellet mass, and v
the pellet transverse velocity. From aerodynamic
drag the force is

F, = Cp(1/2)0u% o w2 = (WCDpA5/2)r25inz(ﬂx/IZOO)
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esin?(511 t + 1.159), (85)

and the contribution to displacement is
a 2 2
Xy FuRc/va . (86)

The coefficient of drag is determined from Table
II, since the total velocity governs.

Table III gives the maximum possible deflection
from the residual gas pressure gradient, Eib, and
the velocity drag, AX, which are 900 out of
phase with each other.

If the symmetry of the chamber is greatly com-
promised then pellet insertion might occur at equi-
valent asymmetries of more than 0.5 cm from the
central node. (of course at the node, x = 0, there
is no transverse displacement of the pellet). If
the displacement were equivalent to a 100-cm dis-
placement of the wave then the pressure gradient
deflections of Table II would be increased by a
factor of 198 and the aerodynamic drag deflections
would be 39 000 times larger. The maximum deflec-
tions at the quarter wave position (x = 600 cm) are
764 8% and 584,000 Ax, of Table III. By tim-
ing insertions within a small fraction of the per-
jod 0.012 s, the designer can select either of the
displacements ax, or ax, or the vector sum
(note that the time factor in Eq. (85) is squared)
as desired. Thus even for a rapid repetition rate
of 10/s, plus a modest exhaust orifice poorly de-
signed, and for slow pellet insertion the 0.0099-cm
maximum deflection at 0.5-cm asymmetry can be con-
verted to a 0.00075-cm deflection for the same par-
ameters, refer to Egs. (83) and (85) , by slight
changes in insertion time. At repetition rates
Tower than 10/s, the gas motion has died down and
the chamber is simultaneously tolerant of large
asymmetry, slow insertion, and low exhaust fraction
leading to small damping.

VI, CONCLUSIONS

We find that for target circles of 1-mm diam-
eter that pellet positional accuracies of about
0.3-mm are needed and that better accuracies are
obtained in Antares COZ large laser designs.

With up to one atmosphere Hy gas pressure and
a 1-meter-Tong pneumatic gun, pellet velocities of
the order of up to 10,000 cm/s are attainable with
peak (initial accelerations) of 1000 g. The amount

oy




TABLE III
MAXIMUM SUCCEEDING PELLET DISPLACEMENT,

x, (0.5 cm ASYMMETRY)

Pressure Gradient
Maximum Pellet
Deflection at

Aerodynamic Drag
Maximum Pellet
Deflection at

Wave Reflection Repetitiqn Pellet Insertion 0.5 cm from sym- 0.5 ¢cm from sym-
Pulse Factor (ends) Rate (s-') Velocity (cm/s) metry, xp (cm) metry, x, (cm)
0.84 1 13,770 3.0(-11) 4.5(-18)
0.84 10 13,770 1.1(-5) 5.5(-7)
0.84 ] 449 2.8(-8) 6.2(-15)
0.8 10 449 9.9(-3) 7.55-4)
0.5 1 13,770 1.3(-29) 7.9(-55)
0.5 10 13,770 1.4(-7) 9.52-11)
0. 1 449 1.2&-26) 1.1(-51)
0.5 10 449 1.3(-4) 1.3(-7)

of Hy released to the chamber at 1 atmosphere is
less than 1012/em3, a negligible number at the

upper densities considered here (1015 to

107 /cm3).  (Beam transport to and focusing on

the pellet is likely to be a principal gas density
and type limiting factor.) Residual chamber gas
densities of 10]7/cm3 provide decelerations of

0.3 g or less (Ar and L‘lz). Pellets typically
can stand accelerations upward of 6000 g so struc-
tural damage is not expected from the processes
considered here.

If the reaction chamber s kept at a vacuum,
the residual gas densities and velocities from pel-
let debris at 5 mm asymmetry (of next pellet tra-
jectory to previous pellet debris) have dropped to
utterly negligible levels. Even using a monatomic
i.e., a higher effect) and a repetition rate of
10/s the pellet trajectory deflection is less than
0.2 um.

In the presence of a high density chamber gas
(Ar at 1017 atoms/cm3), small poorly designed
exhaust orifices (100-cm radius square), high repe-
tition rate (10/s), firing at peak ringing pres-
sure, and with a slow insertion velocity (449
cm/s), one can achieve deflections of as much as
100 um (Table III), but correction of any of these
parameters leads to at Teast an order of magnitude

improvement. Optimizing several leads to utterly
negligible deflections.

In sum, neither the pellet structure, the
available pellet accelerations, nor the highest
expected chamber gas densities (nor the lowest)
permitted by efficient Taser beam transport, are
any restraint upon pellet insertion save at high

repetition rates (> 10/s) when the other parameters
have latitude for, and require (at least some) op-
timization.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge conversations
and assistance from: J. Miller, W. Clouser, F.
Harlow, H. Ruppel, R. Mills, H. G. Horak, E. dJones,
G. Barasch, J. Zinn, R. Gentry, C. Mader, G. White,
J. Munroe, T. Stratton, I. Bohachevsky, J. Gold-
stein, D. Dickman, and G. Fraley.

REFERENCES

1. J. J. Devaney, Los Alamos Scientific Laboratory,
unpublished work (September 1977).

2. J. L. Munroe, Los Alamos Scientific Laboratory,
unpublished work (September 1977).

3. R. C. Weast, ed., Handbook of Chemistry and
Physics, S5th Ed., F52 {Cleveland, 1973).

4. D. E. Gray, ed., American Institute of Physics
Handbook, 3rd ed., 2-262, 2-268 (McGraw-Hill,
New York, 1972).

5. G. S. Fraley, Los Alamos Scientific Laboratory,
personal communication (1977).

6. F. J. Dyson, “Free Expansion of a Gas, III,"
GAMD-566 (October 1958).

7. J. J. Devaney, Los Alamos Scientific Laboratory,
unpublished work (July 7, 1977).

8. L. I. Sedov, Similarity and Dimensional Methods
in Mechanics, M. Holt and M. Friedman, editors
and transiators (Academic Press, New York, 1959).

9. L. A. Booth, "Central Station Power Generation by
Laser Driven Fusion," Los Alamos Scientific Lab-
oratory report LA-4858-MS, V.1 (February 1972).

10. F. H. Harlow and A. A. Amsden, "Fluid Dynamics,"”
Los Alamos Scientific Laboratory report LA-4700
(1971).

n



_ APPENDIX
CORRECTION TO PNEUMATIC ACCELERATIONS FROM PELLET MOTION

In additfon to viscosity and friction, a pellet
accelerated down a tube by gas pressure suffers
pressure loss from the rarefaction created by its
own motion. We approximate the pressure reduction
by that of a piston in a shock tube undergoing
steady expansion with the same velocity. From Har-
low and Amsdenl0 the inftial pressure P, den-

sity, o, and velocity of sound are related by
= VP Jog = VYAKT /My (A-1)

where ¥ is the ratio of specific heats; A  Ava-
gadro's Number; kT  the initial temperature in
energy units; and My the molecular weight. The
pressure, P, and sound velocity behind the pellet
are

= 2y/{r - 1
P =Py(c/c,) ( )

Polese,) o (A-2)

c = CO - %('y - ])V = CO(] - bV), (A-3)

v is the velocity of the pellet.
label

For convenience

29/{Y - V) =e, (A-4)
and

(v - /2, = (A-5)

Let the initial acceleration be
3, = APo/m, (A-6)

where A is the cross sectional area of the pellet
and m its mass. Then from Egs. (A-2), (A-3), and
(A-6), the acceleration is given by

dv/dt = a (1 - bv) <, (A-7)

with solution for the initial conditions,

t=0,v=0, (A-8)

v = b']{‘l - 1+ agbte - eV 1)}(A-g)

12

the distance travelled is

s = dt = —-+ _'_Z—'_'—"
/‘ ) ple-2)

-{1 - |1+ able - ] (@ - 2)/(a - ”}.

Using (A-4) and (A-5) to replace « and b we get

(A-10)

.v _ 2c°] {] - {1 . 7; ] %gt]-(y - D/ + 1)}’

Y -
(A-11)
and
2t 2¢2
ST -U -1
{] R CRA 1 o t]2/(}‘+ 1)} (A 12)

v=se fl - [1+ 1.2 agtreg] V8 (A1)
= 5c t + (5¢2/a.)
[o] [+ S

{1 RN aot/co]sls}.

In the 1imit t or a /c, small (A-13) and (A-14)
become

(A-14)

v = aot’ (A“]S)
and
s =3 a,td (A-16)
whence
v=y2as (A-17)

as usual. For longer t or greater accelerations, t
must be eliminated from (A-13) and (A-14) to obtain
velocity as a function of distance.
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